Era meglio se le scarpe le facevano tutte con lo strappo…

Ben trovati, cari lettori di Camminando Scalzi. Stavolta voglio parlarvi di un argomento piuttosto complesso, che i più nerd tra voi avranno magari anche intuito leggendo il delirante titolo che accompagna questo scritto. Sto parlando della teoria delle stringhe, che è tanto in auge ultimamente tra moltissimi fisici teorici e che sembra sia in grado di spiegare molte cose (non tutte purtroppo…) che finora erano rimaste orfane di un’interpretazione valida. Prima di risolvere un problema però occorre definire bene le ipotesi di partenza, per cui devo introdurre il mondo in cui questa teoria va ad inserirsi, o io per primo rischio di non riuscire più a slacciare i nodi salienti che voglio esporvi.

FATTI IL FISICO
La fisica viene spesso definita la regina delle scienze. È infatti l’unica disciplina in grado di analizzare tanto l’infinitamente grande quanto l’infinitamente piccolo, con tutto ciò che sta in mezzo, ovviamente). Le quattro differenti forze naturali giocano un ruolo differente a seconda della scala spaziale che noi andiamo ad elaborare. Così la forza formalmente meno intensa delle quattro presenti in natura, l’attrazione gravitazionale, è importante solamente nel mondo macroscopico, ovvero quando si considerano oggetti di massa elevata. Le interazioni elettromagnetiche sono decisamente più intense (parliamo di circa 37 ordini di grandezza), e i loro effetti sono sotto i nostri occhi tutti i giorni, quando ascoltiamo la radio, guardiamo la tv o usiamo il computer, tanto per fare un esempio. In virtù di questa loro maggiore intensità, esse sono importanti sia a livello microscopico, che a livello macroscopico, tant’è che gli elettroni orbitano attorno all’atomo proprio in virtù dell’attrazione elettromagnetica. La forza debole è responsabile del decadimento radioattivo di alcuni atomi, così come di alcune interazioni che avvengono tra particelle a livello subatomico. Infine, la forza nucleare forte è responsabile sia dell’attrazione che c’è tra le componenti dei nuclei atomici (neutroni e protoni), sia di quella presente tra i quark che formano gli stessi neutroni e protoni. La teoria che fino ad adesso la fa da padrona è il Modello Standard. Esso è in grado di descrivere con precisione tutte le particelle elementari ad oggi note e tutte le forze naturali, eccetto la gravitazionale. Si tratta di un risultato eccezionale dal punto di vista teorico, dato che finora ha retto piuttosto bene tutte le prove che si sono susseguite negli anni nella miriade di acceleratori di particelle che sono stati costruiti in giro per il nostro pianeta. Tuttavia è ben lungi dall’essere considerata una teoria completa, non comprendendo la gravità e non essendoci spiegazione riguardo la presenza della materia oscura, di cui il nostro universo sembra essere permeato. Il modello standard stabilisce, tra le altre cose, che le forze EM, debole e forte tra le particelle sono mediate da altre particelle, i cosiddetti bosoni di gauge. Per il campo elettromagnetico, ad esempio, la particella mediatrice è esattamente il fotone. In pratica, ciò che noi percepiamo della realtà è il risultato di una miriade di interazioni microscopiche, che noi per comodità tendiamo a raggruppare a seconda delle scale e delle tipologie di interazione. È importante però capire che la fisica non descrive la natura per quella che realmente è: il suo scopo è quello di studiare i fenomeni naturali, ossia tutti gli eventi a cui noi possiamo associare delle grandezze fisiche, in modo tale da poter stabilire delle leggi matematiche che regolino le interazioni tra le grandezze stesse e rendano conto delle loro reciproche variazioni. Il fisico modellizza a livello matematico la natura, cercando di trovare un qualcosa che sia in grado di descrivere in maniera completa ogni possibile accadimento che può avvenire nell’universo. È quindi importante capire che, sebbene nei libri possiamo ad esempio trovare l’immagine di un atomo formato da tante palline rosse (gli elettroni) in orbita attorno a palline gialle e blu (neutroni e protoni), quella è solamente una rappresentazione, e che nella realtà elettroni, protoni, atomi e particelle non sono palline che si muovono nello spazio, e anche la loro rappresentazione a livello matematico è ben lungi dall’essere di questo tipo. Ricordatevi che le mele cadevano anche prima che Newton scrivesse la legge di gravitazione universale…

PUNTI, STRINGHE, MEMBRANE… D-BRANE?

Tralasciando la teoria delle stringhe bosonica, la teoria delle stringhe a cui solitamente ci si riferisce con questa nomenclatura è la variante supersimmetrica a 11 dimensioni. Si tratta di un modello fisico in cui gli elementi costituenti della realtà non sono più oggetti idealizzabili come punti di dimensione zero, ma possono essere anche stringhe (1 dimensione), membrane (2 dimensioni), o D-brane (D dimensioni). La più grande speranza riposta in questo modello è che possa finalmente riuscire a tener conto di tutte le quattro forze naturali fondamentali assieme, dando origine quindi alla teoria del Tutto, tanto agognata dai fisici teorici di tutto il mondo. In linea teorica essa è in grado di tener conto di tutto, ma non si sa bene ancora se in effetti la descrizione che ne salterà fuori sia quella di un universo con le stesse caratteristiche del nostro. Sebbene la comprensione dei dettagli riguardo al comportamento di queste stringhe richieda capacità matematiche che sfuggono anche al fisico medio (me compreso), è possibile condurre delle analogie con le normali corde che illustrano in maniera abbastanza intuitiva alcune delle caratteristiche di questi oggetti. Le stringhe sono soggette a tensione, tipo corda di chitarra. Se ve la immaginate chiusa su sé stessa, potete immaginare che la tensione la faccia man mano rimpicciolire, fino a raggiungere un limite inferiore (da determinarsi tramite un principio fisico che prende il nome da Heisenberg, il famoso “principio di indeterminazione“). Di conseguenza, più una stringa è piccola, maggiore sarà la sua tensione caratteristica. Ora: una corda che riceva un impulso di forza trasversale rispetto alla direzione della tensione, tende a vibrare ad un serie di frequenze ben precise, proprio come le corde di una chitarra. Le differenti modalità di vibrazione delle differenti stringhe si manifesterebbero come le particelle che vengono trattate dal modello standard. La capacità di unire scale spaziali che precedentemente, in virtù della loro grande differenza, avevano messo in crisi sia la fisica classica che la fisica quantistica risiede in una proprietà detta dualità. In ESTREMA semplificazione, ogni aspetto apparentemente distinto dagli altri della natura, sviluppato sulla base delle teorie delle stringhe, risulta essere un caso particolare di una teoria più grossa, cosicchè è in effetti possibile passare da un aspetto all’altro senza variare il contesto matematico (e i concetti che vi stanno dietro) in cui si agisce, da cui la dualità di cui sopra… Posso sempre mettere in relazione matematica due aspetti apparentemente molto differenti, passando da uno all’altro tramite opportune trasformazioni matematiche.

Una delle caratteristiche più interessanti della teoria è che essa, a partire dai principi primi su cui è basata, arriva a determinare matematicamente il numero di dimensioni di cui è composto l’universo. Nelle teorie precedenti infatti il numero di dimensioni (3+1) veniva imposto dal fisico, in quanto 3+1 sono effettivamente le dimensioni che noi percepiamo. Unico problema: se fate i calcoli, di dimensioni ne escono 11. Tante quanti i giocatori di una squadra di calcio. Se poi al posto della teoria supersimmetrica fate i calcoli per quella bosonica, aggiungete al conto delle dimensioni anche una squadra di rugby (11+15=26). Difatto, per giustificare questa cosa, i fisici teorici vi diranno che le dimensioni extra sono matematicamente ricompattabili (con successo) su di loro. Che detto in parole povere, significa che i loro effetti hanno raggi efficaci talmente minuscoli da non poter essere verificati tramite esperimenti, allo stato attuale della tecnologia. Insomma è un po’ come quando guardate le stelle: a voi sembrano punti senza dimensioni, mentre sappiamo bene che sono palle di plasma incandescende del diametro di diversi milioni di chilometri, e che quindi esistono a tutti gli effetti nelle loro tre dimensioni spaziali.

Al di là della sua effettiva comprensibilità, la teoria delle stringhe presenta ancora molti (è il caso di dirlo) nodi irrisolti. Innanzitutto essa non è verificabile, ora come ora. Ciò non deve sembrare anomalo, dato che solitamente la fisica teorica precede quella sperimentale di circa 30 o 40 anni, tant’è che solo negli ultimi anni siamo stati in grado di costruire acceleratori di particelle che confermassero appieno la bontà del modello standard nell’ambito della fisica della alte energie (e LHC, di cui ho già parlato qui su CS, dovrebbe aggiungere, tra le altre cose, l’importante tassello del bosone di Higgs… E se non lo farà ci sarà da ridere). Le caratteristiche più interessanti della teoria delle stringhe sono di carattere matematico, e riguardano soprattutto i risultati che potrebbe dare, piuttosto che ciò che restituisce attualmente. A prova di ciò, basti pensare che con i pochi elementi certi che abbiamo per ora tra le mani, la teoria delle stringhe può fornire più di 10500 modellizzazioni di universi, ognuno dei quali con le proprie leggi fisiche, tra i quali ci dovrebbe essere il nostro. Ammettere l’esistenza di un numero pressochè infinito di universi non rappresenta un problema (anzi spiega alcuni aspetti della cosmologia moderna), il fatto è che non sappiamo ancora dire quale dei modelli è effettivamente valido, non potendolo verificare. Per osservare in maniera diretta le stringhe, si dovrebbero poter osservare distintamente distanze nell’ordine dei 10-35 metri, dove LHC arriva al massimo a circa 10– 19. Tuttavia, una delle prove della validità della teoria delle stringhe dovrebbe proprio provenire da LHC, in grado di dare evidenza indiretta dell’esistenza di questi oggetti tramite particolari collisioni al suo interno.

Avreste mai pensato che per legarvi le scarpe avreste dovuto utilizzare un acceleratore di particelle?

Pubblicità